

Airborne chemical measurements to assess offshore blowouts Thomas Ryerson

Mandate: NOAA is tasked under the National Contingency Plan with providing scientific support to the On-Scene Coordinator for offshore oil spills.

CSD response: we diverted the chemically-instrumented NOAA P-3 aircraft in June 2010 from our CalNex field project to quantify atmospheric effects of the *Deepwater Horizon (DWH)* disaster.

Impacts: This led to unexpected insights into air quality impacts, *DWH* oil distribution in the Gulf, a unique new approach to quantify subsurface oil flow rates – and an operational vision for the future.

Stakeholders: NOAA National Ocean Service, U.S. Coast Guard, U.S. Geological Survey, Environmental Protection Agency, Department of Justice, Gulf states, response personnel, and the public.

CSD research defined the air quality impacts of the *DWH* disaster

Ozone

Ozone enhancements were typically **less than 20 ppb** over fairly small areas.

Soot

Surface oil burning released

1 million kilograms of
black carbon soot particles.

Perring et al., GRL (2011)

Organic particles

Far more particle mass came from evaporation of the oil slick; these organic aerosol particles had unknown health effects.

Middlebrook et al., PNAS (2012)

Organic aerosol formation may have had the largest impact on air quality

DWH oil distribution quantified

(black line in each plot shows the leaking composition)

Airborne methane and hydrocarbon data over a wide range of solubility and volatility showed **what went where**, and **why.**

DWH subsurface flow rate quantified

Leaking hydrocarbon composition (grams per gram of fluid)

Subsurface flow rate, from the atmospheric flow rate of any of the insoluble and volatile hydrocarbons, was within 5% of official final estimates.

Airborne flow rate assessment is accurate and independent of other techniques; in future, assessment could be done in real time

Research-to-applications demonstrated in the 2012 Elgin rig blowout in the North Sea

- A blowout forced the evacuation of the *Elgin* rig in the North Sea, shutting down 10% of UK gas production for nearly two months
- Within five days a chemically-instrumented research aircraft had quantified the flow rate (flight plans and data analysis by NOAA CSD)
- Based on the airborne data, a decision was made to re-board the rig and proceed with a top kill, avoiding time-consuming relief wells

communicated to Total, DECC, and the public promptly after each of 5 flights

The airborne chemical response delivered:

- time-critical and actionable information.
- protection to the marine environment.
- savings of \$1.5 billion to the UK treasury.

A CSD vision for transferring our research to operations:

Interagency effort required to deploy, analyze, and effectively communicate results to public, responders, and stakeholders.

An operational quick-response airborne system

A timely National investment opportunity to provide highprofile "environmental intelligence" in future blowouts

